These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The assessment of the geometry of dinucleotide steps in double-helical DNA; a new local calculation scheme.
    Author: el Hassan MA, Calladine CR.
    Journal: J Mol Biol; 1995 Sep 01; 251(5):648-64. PubMed ID: 7666417.
    Abstract:
    In this paper, we develop a new local Euler-angle-based scheme for assessing the internal kinematics or geometry of a general dinucleotide step in double-helical DNA. The geometry of a dinucleotide step is completely defined by: (1) the base-pair parameters that describe the relative position and orientation of one base with respect to the other in a standard Watson-Crick base-pair, and (2) the step parameters that describe the relative position and orientation of the two base-pairs. The key feature of our scheme is that it makes use of the concept of a mid-step reference frame. In addition to ensuring that identical values of step parameters are obtained irrespective of the direction of reckoning of a dinucleotide step (in the 5'-->3' direction along either strand), this mid-step-triad concept leads to local definitions of the step parameters that render them independent of the overall global conformation of the oligomer in question. In addition to presenting our own calculation scheme we also examine critically the most widely used package for the calculation of some of the step and base-pair parameters, viz, the NEWHELIX suite of programmes by R.E. Dickerson. Finally, a dodecamer, a decamer and an octamer are arbitrarily selected from a public data-base (N.D.B at Rutgers), and their step parameters are calculated by using both NEWHELIX and the proposed scheme. A comparison of the results is given whereby it is shown that for the step parameters: Helical Twist and Slide, and the base-pair parameters Propeller and Buckle, NEWHELIX and our proposed scheme give rather similar values. Substantial differences are seen, however, in the case of Rise. Two alternative definitions are given by NEWHELIX for the calculation of Roll and Tilt. Whereas one definition agrees well with our proposed scheme, the other is substantially different.
    [Abstract] [Full Text] [Related] [New Search]