These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Involvement of N-methyl-D-aspartate (NMDA) receptors in noncompetitive NMDA receptor antagonist-induced hyperlocomotion in mice.
    Author: Irifune M, Shimizu T, Nomoto M, Fukuda T.
    Journal: Pharmacol Biochem Behav; 1995; 51(2-3):291-6. PubMed ID: 7667342.
    Abstract:
    The role of the N-methyl-D-aspartate (NMDA) receptors in hyperlocomotion induced by (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), a potent and selective noncompetitive NMDA receptor antagonist, was examined in male ddY mice. A low dose of MK-801 [0.2 mg/kg, intraperitoneally (IP)] produced a marked increase in locomotor activity without obvious staggering gait. In contrast, a high dose (1 mg/kg, IP) induced a typical motor syndrome characterized by increased locomotor activity, stereotyped behavior, and severe ataxia. NMDA (60-120 mg/kg, IP), an NMDA receptor agonist, dose dependently antagonized hyperlocomotion induced by a low dose of MK-801 (0.2 mg/kg). However, even a high convulsive dose of NMDA (240 mg/kg, IP) could not completely antagonize the hyperactivity induced by MK-801. On the other hand, neither a high dose of N-methyl-L-aspartate (400 mg/kg, IP), a stereoisomer of NMDA, nor a critical subconvulsive dose of kainate (10 mg/kg, IP), a non-NMDA receptor agonist, reversed MK-801-induced hyperlocomotion. The activity induced by MK-801 was potently suppressed by low doses of haloperidol (0.05-0.1 mg/kg, IP), a dopamine (DA) receptor antagonist, in a dose-dependent manner. These data for MK-801 were similar to those for phencyclidine and ketamine, other noncompetitive NMDA receptor antagonists. These results suggest that noncompetitive NMDA receptor antagonist-induced hyperlocomotion is mediated, at least in part, by NMDA receptor antagonism, although this hyperactivity may also involve dopaminergic mechanisms through indirect (perhaps by reducing NMDA receptor-mediated neurotransmission) and/or direct (by inhibiting DA uptake) effects on DA neurons.
    [Abstract] [Full Text] [Related] [New Search]