These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Discrimination of the toxic potential of chemically differing topical glucocorticoids using a neutral red release assay with human keratinocytes and fibroblasts. Author: Korting HC, Hülsebus E, Kerscher M, Greber R, Schäfer-Korting M. Journal: Br J Dermatol; 1995 Jul; 133(1):54-9. PubMed ID: 7669640. Abstract: In inflammatory skin disease, hydrocortisone and prednisolone double esters are about equipotent to conventional medium potency topical glucocorticoids, such as betamethasone valerate. Local adverse effects, in particular skin atrophy, are a potential problem with topical glucocorticoids. Recently, cell cultures have shown promise as a means of assessing local tolerance. To investigate the toxic potential of hydrocortisone, hydrocortisone-17-butyrate, hydrocortisone aceponate, prednicarbate, triamcinolone acetonide, betamethasone valerate and desoximethasone, human keratinocytes and fibroblasts were exposed to these agents in vitro, using a modified neutral red release assay. In addition, the morphology of these cells was assessed by light microscopy. Although all the topical glucocorticoids tested proved toxic to both cell types, there were major differences between glucocorticoids in their effect on fibroblasts. Hydrocortisone and the non-halogenated double-ester-type glucocorticoids were less toxic than the conventional medium potency topical glucocorticoids tested (betamethasone valerate and desoximethasone). In particular, hydrocortisone aceponate was less toxic than betamethasone valerate (P < or = 0.05). In general, the effect of topical glucocorticoids on the cells, based on neutral red release, was more marked with keratinocytes than with fibroblasts. Although the ranking order with respect to the toxic potential was similar, a clear-cut difference was not observed between non-halogenated double-ester-type glucocorticoids and betamethasone valerate. Morphological changes due to glucocorticoid exposure followed the same pattern with both keratinocytes and fibroblasts. The neutral red release assay is able to discriminate between the cytotoxic effects of chemically differing topical glucocorticoids on human keratinocytes and fibroblasts.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]