These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Symmetric structural features and binding site of the primary electron donor in the reaction center of Chlorobium.
    Author: Feiler U, Albouy D, Robert B, Mattioli TA.
    Journal: Biochemistry; 1995 Sep 05; 34(35):11099-105. PubMed ID: 7669767.
    Abstract:
    The protein binding interactions of the constituent bacteriochlorophyll a molecules of the primary electron donor, P840, in isolated reaction centers from Chlorobium limicola f thiosulphatophilum and the electronic symmetry of the radical cation P840+. were determined using near-infrared Fourier transform (FT) Raman spectroscopy excited at 1064 nm. The FT Raman vibrational spectrum of P840 indicates that it is constituted of a single population of BChl a molecules which are spectrally indistinguishable. The BChl a molecules of P840 are pentacoordinated with only one axial ligand on the central Mg atom, and the pi-conjugated C2 acetyl and C9 keto carbonyls are free of hydrogen-bonding interactions. The FT Raman spectrum of P840+. exhibits a 1707 cm-1 band attributable to a BChl a C9 keto carbonyl group vibrational frequency that has upshifted 16 cm-1 upon oxidation of P840; this upshift is exactly one-half of that expected for the one-electron oxidation of monomeric BChl a in vitro. The 16 cm-1 upshift, thus, indicates that the resulting +1 charge is equally shared between two BChl a molecules. This situation is markedly different from that of the oxidized primary donor of the purple bacterial reaction center of Rhodobacter sphaeroides, (i) which exhibits a 1717 cm-1 band that has upshifted 26 cm-1, indicating an asymmetric distribution of the resulting +1 charge over the two constituent BChl a molecules, and (ii) whose H-bonding pattern with respect to the pi-conjugated carbonyl groups is asymmetric.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]