These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Excitotoxic lesions of the pedunculopontine tegmental nucleus disinhibit orofacial behaviours stimulated by microinjections of d-amphetamine into rat ventrolateral caudate-putamen. Author: Allen LF, Winn P. Journal: Exp Brain Res; 1995; 104(2):262-74. PubMed ID: 7672019. Abstract: Data are presented which support the hypothesis that the pedunculopontine tegmental nucleus serves as an output station for the striatum and, in particular, has a role in the expression of behaviour stimulated from the ventrolateral caudate-putamen, a rodent homologue of the primate putamen. Rats received either bilateral ibotenate or sham lesions in the pedunculopontine tegmental nucleus and bilateral cannulation of the ventrolateral caudate-putamen. Oral motor activities were observed following microinjection of 5.0, 10.0 and 20.0 micrograms d-amphetamine (and vehicle-only control) into the ventrolateral caudate-putamen. As expected, orofacial behaviours such as biting and licking were observed in sham-lesioned rats following this treatment, but pedunculopontine tegmental nucleus-lesioned rats exhibited an increase in the incidence of these oral motor behaviours at all doses of amphetamine compared with the controls. This increase was the product of changes in the duration and number of times in which they engaged in oral motor behaviours, but not the latency to initiate them. There was no change in the normal oral motor activities associated with grooming. Histological analysis showed that ibotenate lesions destroyed both cholinergic and non-cholinergic neurones in the pedunculopontine tegmental nucleus. These data indicate that loss of the pedunculopontine tegmental nucleus disinhibits oral motor behaviours stimulated from the ventrolateral caudate-putamen by d-amphetamine and are discussed in terms of their implications for understanding the relationships between striatal outflow and structures in the pons.[Abstract] [Full Text] [Related] [New Search]