These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of ML-9 on insulin stimulation of glucose transport in 3T3-L1 adipocytes.
    Author: Inoue G, Kuzuya H, Hayashi T, Okamoto M, Yoshimasa Y, Kosaki A, Kono S, Okamoto M, Maeda I, Kubota M.
    Journal: J Biol Chem; 1993 Mar 05; 268(7):5272-8. PubMed ID: 7680348.
    Abstract:
    Treatment of 3T3-L1 adipocytes with insulin resulted in activation of 2-deoxyglucose transport activity and translocation of glucose transporters (GLUT4 and GLUT1) from the cytoplasmic space to the plasma membrane. ML-9 (a myosin light chain kinase inhibitor) inhibited insulin stimulation of 2-deoxyglucose transport activity by 80% at 100 microM (IC50 = 27 microM) without affecting 2-deoxyglucose transport activity in the basal state. The inhibition was independent of extracellular Ca2+ concentration and almost fully reversible at 40 microM ML-9. ML-9 did not inhibit insulin-stimulated tyrosine phosphorylation of 95-kDa protein in the wheat germ agglutinin-purified preparation and of 95- and 160-kDa proteins in intact cells. However, ML-9 inhibited insulin-induced translocation of both GLUT4 and GLUT1 in a dose-dependent manner. The dose-response curves were similar to those observed for the inhibition of insulin stimulation of 2-deoxyglucose transport activity. Neither insulin nor ML-9 affected the phosphorylation state of both heavy and light chains of myosin. Therefore, it seems likely that ML-9 inhibits the insulin-induced translocation of glucose transporters at a step beyond the insulin receptor kinase activity by a mechanism different from that affecting phosphorylation of the myosin light chain. Phosphorylating activity of microtubule-associated protein 2 and myelin basic protein was stimulated by insulin, and this stimulation was not affected by ML-9. ML-9, however, inhibited the phosphorylating activity in vitro and insulin stimulation of the phosphorylating activity of ribosomal protein S6 in intact cells in a dose-dependent manner similar to that observed for the inhibition of insulin stimulation of glucose transport. These results suggest that mitogen-activated protein kinase may be one of the constituents in intracellular insulin signaling to the glucose transport system.
    [Abstract] [Full Text] [Related] [New Search]