These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Autoantigenic epitopes of the B and D polypeptides of the U1 snRNP. Analysis of domains recognized by the Y12 monoclonal anti-Sm antibody and by patient sera.
    Author: Hirakata M, Craft J, Hardin JA.
    Journal: J Immunol; 1993 Apr 15; 150(8 Pt 1):3592-601. PubMed ID: 7682245.
    Abstract:
    Anti-Sm antibodies, a specific marker for SLE, are directed against the B'/B and D polypeptides of Sm small nuclear ribonucleoproteins. The Y12 monoclonal anti-Sm antibody (Y12 mAb), as well as many anti-Sm patient sera, recognize cross-reactive epitopes on the B'/B and D polypeptides. This immunoreactive site is of special interest since polypeptides B and D share little amino acid sequence homology. In the present study, we have sought to establish the autoantigenic domain of polypeptides B and D that accounts for this epitope. We tested the ability of the Y12 mAb and anti-Sm sera to immunoprecipitate truncated forms of polypeptides B and D translated in vitro from mRNA bearing 5' and 3' end deletions. Most anti-Sm sera bound epitopes at the carboxyl-terminus of polypeptide B, however, autoantigenic epitopes were also found at the amino-terminus (amino acids 1 to 83 and 104 to 115). Surprisingly, the Y12 mAb recognized nonoverlapping amino-terminal and carboxyl-terminal halves of polypeptide B. One putative Y12 mAb binding site (amino acids 104 to 115) indicated by carboxyl-terminal deletion studies was confirmed through recognition of a corresponding synthetic peptide. Deletion studies with polypeptide D demonstrated a major autoantigenic domain on the carboxyl-terminus (amino acids 85 to 119) that was necessary for recognition by the Y12 mAb and by 7/14 patient sera. These results indicate that a cross-reactive epitope on B'/B and D, as defined by the Y12 mAb, resides on at least two different domains of polypeptide B and localizes to the carboxyl-terminus of polypeptide D. From the shared homology of truncated forms of B and D polypeptides recognizable with the Y12 mAb, we suspect that some form of GRG motif is involved in developing the Y12 mAb epitope that may involve other residues and be largely conformational in nature.
    [Abstract] [Full Text] [Related] [New Search]