These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Author: Ito H, Hiroe M, Hirata Y, Tsujino M, Adachi S, Shichiri M, Koike A, Nogami A, Marumo F. Journal: Circulation; 1993 May; 87(5):1715-21. PubMed ID: 7683979. Abstract: BACKGROUND: Cardiac hypertrophy is commonly observed in acromegalic patients, in whom serum insulin-like growth factor-I (IGF-I) levels are elevated. In the present study, we examined whether IGF-I induces hypertrophy in cultured neonatal rat cardiomyocytes through its specific receptor and whether IGF binding protein-3 (IGFBP-3), which is a major circulating carrier protein for IGF-I, inhibits IGF-I-induced cardiac hypertrophy in vitro. METHODS AND RESULTS: Because the response of cardiac hypertrophy is characterized by the induction of expression for muscle-specific genes, the effect of IGF-I on steady-state levels of mRNA for myosin light chain-2 (MLC-2) and troponin I and for skeletal and cardiac alpha-actin isoforms was evaluated by Northern blot analysis. IGF-I (10(-7) M) increased mRNA levels for MLC-2 and troponin I as early as 60 minutes with maximum levels by 6 hours, which were maintained for as long as 24 hours. IGF-I (10(-7) M) also increased transcripts for skeletal alpha-actin but not for cardiac alpha-actin. The cell size as evaluated morphometrically was almost doubled after 48-hour treatment with IGF-I. IGF-I induction of protein synthesis was dose dependent (10(-10) to 10(-7) M) with a maximal 2.2-fold increase seen at 10(-8) M. In contrast to the hypertrophic effect of IGF-I, growth hormone affected neither protein synthesis nor expression for muscle-specific genes. Binding study using 125I-IGF-I revealed the presence of specific binding sites for IGF-I in rat cardiomyocytes. IGFBP-3 induced a dose-dependent inhibition of protein synthesis stimulated by IGF-I; IGFBP-3 (10(-7) M) completely inhibited the [3H]leucine uptake stimulated by IGF-I (10(-8) M). IGFBP-3 similarly inhibited the IGF-I-stimulated gene expressions for MLC-2 and troponin I. CONCLUSIONS: These results suggest that IGF-I directly causes cardiac hypertrophy and that its effect can be blocked by IGFBP-3.[Abstract] [Full Text] [Related] [New Search]