These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Mitomycin C and its bioreduction: relevance of NAD(P)H: quinone oxidoreductase activity to mitomycin C-induced DNA damage and cytotoxicity].
    Author: Nishiyama M, Saeki S, Aogi K, Hirabayashi N, Toge T.
    Journal: Gan To Kagaku Ryoho; 1993 Jun; 20(8):1037-41. PubMed ID: 7685584.
    Abstract:
    Using 4 human cancer cell lines, the relevance of NAD(P)H: quinone oxidoreductase (DT-diaphorase) activity to mitomycin C (MMC)-induced cytotoxicity was investigated. KB cells (oral epidermoid carcinoma) had more than 4 times higher DT-diaphorase activity than PH101 (pancreatic cancer), SH 101 (gastric cancer), or K562 (myelogenous leukemia) cells. The sensitivity to MMC was greatest in KB cells. Concentrations causing 50% inhibition of cell growth (IC50 value: microgram/ml) by 30 min treatment with MMC were 0.4 in KB, 1.1 in PH101, 1.6 in SH 101, and 1.9 in K 562. Treatment with 1.5 micrograms/ml of MMC induced DNA total cross links, and the indices were 0.18 in KB, 0.10 in SH101, 0.09 in SH101, and 0.06 in K 562. When DT-diaphorase activity was inhibited by non-toxic dicoumarol (50 microM), DNA damage and cytotoxic activity induced by MMC were decreased in all cells examined. Especially in KB cells, it was remarkable. Since it was shown that the level of cellular DT-diaphorase activities were correlated with the responses to MMC, we suggest that bioreduction by DT-diaphorase may activate MMC.
    [Abstract] [Full Text] [Related] [New Search]