These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Author: Wiedmer T, Hall SE, Ortel TL, Kane WH, Rosse WF, Sims PJ. Journal: Blood; 1993 Aug 15; 82(4):1192-6. PubMed ID: 7688991. Abstract: Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired stem-cell disorder in which the glycolipid-anchored membrane proteins, including the cell-surface complement inhibitors, CD55 and CD59, are partially or completely deleted from the plasma membranes of mature blood cells. To gain insight into the pathogenesis of thrombosis that is frequently observed in this disorder, the procoagulant responses of PNH platelets exposed to the human terminal complement proteins C5b-9 were investigated. C5b-9 complexes were assembled on gel-filtered platelets by incubation with purified C5b6, C7, C9, and limiting amounts of C8. Platelet microparticle formation and exposure of plasma membrane-binding sites for coagulation factor Va were then analyzed by flow cytometry. PNH platelets exhibiting undetectable levels of surface CD59 antigen showed an approximately 10-fold increase in sensitivity to C5b-9-stimulated expression of membrane-binding sites for factor Va when compared with platelets from normal controls. Expression of catalytic surface for the prothrombinase complex (VaXa) paralleled the exposure of factor Va-binding sites; the rate of prothrombin conversion by C5b-9-treated PNH platelets exceeded that of C5b-9-treated normal controls by approximately 10-fold at the maximal input of C8 tested (500 ng/mL). These data indicate that PNH platelets deficient in plasma membrane CD59 antigen are exquisitely sensitive to C5b-9-induced expression of prothrombinase activity, and suggest that the tendency toward thrombosis in these patients may be due, at least in part, to the deletion of this complement inhibitor from the platelet plasma membrane.[Abstract] [Full Text] [Related] [New Search]