These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glucose transporter recycling in rat adipose cells. Effects of potassium depletion. Author: Nishimura H, Zarnowski MJ, Simpson IA. Journal: J Biol Chem; 1993 Sep 15; 268(26):19246-53. PubMed ID: 7690030. Abstract: Depletion of intracellular potassium (K+) induced a 4-fold increase in basal and 1 microM phorbol-12-myristate-13-acetate (PMA)-stimulated 3-O-methylglucose transport in rat adipose cells. K+ depletion had no effect on the maximum insulin (0.7 microM)-stimulated transport rate but enhanced the sensitivity to insulin 3-fold (EC50 = 0.05 versus 0.15 nM) by a mechanism that did not result from changes in the insulin receptor binding, autophosphorylation, or tyrosine kinase activity. Western blotting analysis revealed that K+ depletion induced a 2.2-fold increase in GLUT4 in plasma membranes from basal cells, enhanced the PMA-stimulated GLUT4 translocation by 4-fold, and increased the 5-fold insulin-stimulated GLUT4 translocation by 15%, indicating the presence of an inactive GLUT4 intermediate. The time course for insulin's stimulation of transport activity was accelerated by K+ depletion (t1/2 = 3 versus 1.5 min). Conversely, the reversal of transport activity, on removal of insulin, was delayed (t1/2 = 11 versus 22 min). The corresponding t1/2 values for the loss of GLUT4 were 22 min in control cells and 40 min in K(+)-depleted cells, again indicating the existence of an inactive intermediate. Photolabeling intact cells with the impermeant, exofacial photolabel 2-N-4-(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannos-4 - yloxy)-2-propylamine in the continuous presence of insulin revealed that K+ depletion had no effect on the GLUT4 externalization rate but halved the rate of internalization. K+ depletion elicited entirely analogous effects on the recycling of insulin-like growth factor II/mannose 6-phosphate receptor, strongly supporting the involvement of a coated pit mechanism in the recycling of GLUT4 transporters. An inactive conformation of GLUT4 has been detected in plasma membranes from insulin-stimulated cells, which is enhanced by K+ depletion, suggesting a limitation in the adipose cells' capacity to express active GLUT4 transporters.[Abstract] [Full Text] [Related] [New Search]