These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Function of the SOS process in repair of DNA damage induced by modern 4-quinolones. Author: Howard BM, Pinney RJ, Smith JT. Journal: J Pharm Pharmacol; 1993 Jul; 45(7):658-62. PubMed ID: 7692035. Abstract: The recA13 mutant of Escherichia coli strain K-12, which lacks recombination and SOS error-prone DNA repair is hypersensitive to nalidixic acid and to the newer 4-quinolones ciprofloxacin, norfloxacin and ofloxacin. However, whereas recombination-proficient but SOS repair-deficient strains, such as those carrying the lexA3 or recA430 alleles are no more sensitive to nalidixic than the lexA+ recA+ parent, they are more sensitive to the newer quinolones, although not as sensitive as the recA13 derivative. Nalidixic acid possesses only bactericidal mechanism A (which requires RNA and protein synthesis and is only effective on actively dividing cells), whereas the newer 4-quinolones exhibit additional mechanisms B (which does not require RNA and protein synthesis and is effective on bacteria unable to multiply) and C (which requires RNA and protein synthesis but does not depend on cell division). Results obtained with bacteria suspended in phosphate-buffered saline, which inhibits mechanism A, and with bacteria suspended in nutrient broth plus rifampicin, which inhibits mechanisms A and C, showed that the lexA3 mutant was still more sensitive than the lexA+ parent under these conditions. The results suggest that, unlike bactericidal mechanism A, DNA damage that results from bactericidal mechanisms B and C of the newer 4-quinolones is subject to SOS error-prone (mutagenic) repair.[Abstract] [Full Text] [Related] [New Search]