These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Seizures during ethanol withdrawal are blocked by focal microinjection of excitant amino acid antagonists into the inferior colliculus and pontine reticular formation. Author: Riaz A, Faingold CL. Journal: Alcohol Clin Exp Res; 1994 Dec; 18(6):1456-62. PubMed ID: 7695044. Abstract: Physical dependence on ethanol can result in seizure susceptibility during ethanol withdrawal. In rats, generalized tonic-clonic seizures are precipitated by auditory stimulation during the ethanol withdrawal syndrome. Excitant amino acids (EAAs) are implicated as neurotransmitters in the inferior colliculus and the brain stem reticular formation, which play important roles in the neuronal network for genetic models of audiogenic seizures (AGSs). Ethanol blocks the actions of EAAs in various brain regions, including the inferior colliculus. In this study, dependence was produced by intragastric administration of ethanol for 4 days. During ethanol withdrawal, AGSs were blocked by systemic administration of competitive or noncompetitive NMDA antagonists 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) or dizocilpine (MK-801). Focal microinjections of NMDA or non-NMDA antagonists into the inferior colliculus or the pontine reticular formation also inhibited AGSs. MK-801 was the most potent anticonvulsant systemically. When injected into the inferior colliculus, CPP had a more potent anticonvulsant effect than either MK-801 or the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. The inferior colliculus was more sensitive than the pontine reticular formation to the anticonvulsant effects of both competitive NMDA and non-NMDA antagonists. The results of the present support the idea that continued ethanol administration may lead to development of supersensitivity to the action of EAAs in inferior colliculus and pontine reticular formation neurons. This may be a critical mechanism subserving AGS susceptibility during ethanol withdrawal.[Abstract] [Full Text] [Related] [New Search]