These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolism and disposition of 14C-granisetron in rat, dog and man after intravenous and oral dosing. Author: Clarke SE, Austin NE, Bloomer JC, Haddock RE, Higham FC, Hollis FJ, Nash M, Shardlow PC, Tasker TC, Woods FR. Journal: Xenobiotica; 1994 Nov; 24(11):1119-31. PubMed ID: 7701853. Abstract: 1. The disposition and metabolic fate of 14C-granisetron, a novel 5-HT3 antagonist, was studied in rat, dog, and male human volunteers after intravenous and oral administration. 2. Complete absorption occurred from the gastrointestinal tract following oral dosing, but bioavailability was reduced by first-pass metabolism in all three species. 3. There were no sex-specific differences observed in radiometabolite patterns in rat or dog and there was no appreciable change in disposition with dose between 0.25 and 5 mg/kg in rat and 0.25 and 10 mg/kg in dog. Additionally, there were no large differences in disposition associated with route of administration in rat, dog and man. 4. In rat and dog, 35-41% of the dose was excreted in urine and 52-62% in faeces, via the bile. Metabolites were largely present as glucuronide and sulphate conjugates, together with numerous minor polar metabolites. In man, about 60% of dosed radioactivity was excreted in urine and 36% in faeces after both intravenous and oral dosing. Unchanged granisetron was only excreted in urine (5-25% of dose). 5. The major metabolites were isolated and identified by MS spectroscopy and nmr. In rat, the dominant routes of biotransformation after both intravenous and oral dosing were 5-hydroxylation and N1-demethylation, followed by the formation of conjugates which were the major metabolites in urine, bile and plasma. In dog and man the major metabolite was 7-hydroxy-granisetron, with lesser quantities of the 6,7-dihydrodiol and/or their conjugates.[Abstract] [Full Text] [Related] [New Search]