These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential selenium-dependent expression of type I 5'-deiodinase and glutathione peroxidase in the porcine epithelial kidney cell line LLC-PK1. Author: Gross M, Oertel M, Köhrle J. Journal: Biochem J; 1995 Mar 15; 306 ( Pt 3)(Pt 3):851-6. PubMed ID: 7702583. Abstract: The Se-dependent expression of two selenoproteins, cytosolic glutathione peroxidase (cGPx) and type I iodothyronine-5'-deiodinase (5'DI), was investigated in the porcine epithelial kidney cell line LLC-PK1 in serum-free medium. The selenite-dependent expression of cGPx and 5'DI was revealed by enzyme-activity measurements, affinity labelling of 5'DI, metabolic labelling of proteins with 75Se and steady-state mRNA analysis. The expression of the two enzymes strongly depended on selenite concentrations of the culture medium. cGPx required 2-fold higher selenite levels than 5'DI to reach half-maximal activity. The Se-dependent enzyme activities were approximately paralleled by the corresponding steady-state mRNA levels. The response of the two enzymes to Se supply was further characterized by kinetic Se-depletion and -repletion experiments. Upon removal of medium selenite, cGPx activity decreased exponentially, whereas after an initial decrease over 1-2 days, 5'DI levels completely recovered during a further 2 days. These data indicate a differential Se-dependent regulation of the two selenoproteins, with 5'DI being preferentially supplied with the trace element Se, thus ensuring a continuous cellular capacity for thyroid-hormone activation, even under Se-deficient conditions. The abundant cGPx in cells with sufficient Se supply might serve as a cellular Se store which can be mobilized for the synthesis of more vital selenoproteins such as 5'DI under shortage conditions. Thus, a cellular hierarchy of selenoprotein expression, reflected by different individual regulation mechanisms at the transcriptional and post-transcriptional level, adds to the previously recognized tissue-specific hierarchy of Se retention.[Abstract] [Full Text] [Related] [New Search]