These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Author: Russell RJ, Hough DW, Danson MJ, Taylor GL. Journal: Structure; 1994 Dec 15; 2(12):1157-67. PubMed ID: 7704526. Abstract: BACKGROUND: The Archaea constitute a phylogenetically distinct, evolutionary domain and comprise organisms that live under environmental extremes of temperature, salinity and/or anaerobicity. Different members of the thermophilic Archaea tolerate temperatures in the range 55-110 degrees C, and the comparison of the structures of their enzymes with the structurally homogolous enzymes of mesophilic organisms (optimum growth temperature range 15-45 degrees C) may provide important information on the structural basis of protein thermostability. We have chosen citrate synthase, the first enzyme of the citric acid cycle, as a model enzyme for such studies. RESULTS: We have determined the crystal structure of Thermoplasma acidophilum citrate synthase to 2.5 A and have compared it with the citrate synthase from pig heart, with which it shares a high degree of structural homology, but little sequence identity (20%). CONCLUSIONS: The three-dimensional structural comparison of thermophilic and mesophilic citrate synthases has permitted catalytic and substrate-binding residues to be tentatively assigned in the archaeal, thermophilic enzyme, and has identified structural features that may be responsible for its thermostability.[Abstract] [Full Text] [Related] [New Search]