These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Recycling and buffering of intracellular calcium in vascular smooth muscle from genetically hypertensive rats.
    Author: Kanagy NL, Ansari MN, Ghosh S, Webb RC.
    Journal: J Hypertens; 1994 Dec; 12(12):1365-72. PubMed ID: 7706695.
    Abstract:
    OBJECTIVE: To test the hypothesis that impaired Ca2+ recycling by the sarcoplasmic reticulum Ca-ATPase contributes to augmented force development in arteries from stroke-prone spontaneously hypertensive rats (SHRSP). METHODS: Force development to caffeine (0.3-30 mmol/l) in the absence of extracellular Ca2+ was compared in aortic strips from SHRSP and Wistar-Kyoto (WKY) rats. In another protocol the strips were rinsed at the peak of contraction to caffeine (20 mmol/l) and subsequently restimulated with the alkaloid. The second response, dependent on recycled Ca2+, was used as a measure of sarcoplasmic reticulum function. A third protocol evaluated caffeine-induced contractions after Ca2+ depletion and reloading. In these latter experiments the effects of thapsigargin, an inhibitor of the sarcoplasmic reticulum Ca-ATPase, and ryanodine, an activator of sarcoplasmic reticulum Ca2+ release channels, were used to evaluate Ca2+ buffering. Finally, unidirectional 45Ca2+ influx was measured. RESULTS: Contractions to caffeine (0.3-30 mmol/l) were larger in SHRSP aortic strips than in WKY rat strips. After a rinse at the peak of the initial response to caffeine, SHRSP segments contracted more when challenged a second time. Thapsigargin (0.3-10 mumol/l) caused a concentration-dependent contraction during Ca2+ loading that was greater in SHRSP than in WKY rat strips, and a concentration-dependent inhibition of caffeine-induced contraction with similar median inhibitory concentrations in the two groups. Ryanodine did not cause contraction during Ca2+ loading, but caffeine-induced contractions were reduced after ryanodine treatment in both groups. 45Ca2+ influx was increased in SHRSP aortic segments. CONCLUSIONS: The greater force development to caffeine in SHRSP aortic strips probably reflects a greater storage of activator Ca2+ in the sarcoplasmic reticulum. On the basis of the pharmacological properties of thapsigargin and ryanodine, it appears that the larger store is caused by enhanced Ca2+ influx across the sarcolemma rather than by recycling of Ca2+ by sarcoplasmic reticulum Ca-ATPase. Experiments evaluating the secondary response to caffeine also support the interpretation that recycling of activator Ca2+ into the sarcoplasmic reticulum does not explain the augmented force development in SHRSP aortic segments.
    [Abstract] [Full Text] [Related] [New Search]