These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential sensitivity of p53(-) and p53(+) cells to caffeine-induced radiosensitization and override of G2 delay.
    Author: Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D, Tang W, Friend S.
    Journal: Cancer Res; 1995 Apr 15; 55(8):1643-8. PubMed ID: 7712468.
    Abstract:
    Most drug discovery efforts have focused on finding new DNA-damaging agents to kill tumor cells preferentially. An alternative approach is to find ways to increase tumor-specific killing by modifying tumor-specific responses to that damage. In this report, we ask whether cells lacking the G1-S arrest in response to X-rays are more sensitive to X-ray damage when treated with agents that override G2-M arrest. Mouse embryonic fibroblasts genetically matched to be (+) or (-) p53 and rat embryonic fibroblasts (+) or (-) for wild-type p53 function were irradiated with and without caffeine, a known checkpoint inhibitor. At low doses (500 microM), caffeine caused selective radiosensitization in the p53(-) cells. At this low dose (where no effect was seen in p53(+) cells), the p53(-) cells showed a 50% reduction in the size of the G2-M arrest. At higher doses (2 mM caffeine), where sensitization was seen in both p53(+) and p53(-) cells, the radiosensitization and the G2-M override were more pronounced in the p53(-) cells. The greater caffeine-induced radiosensitization in p53(-) cells suggests that p53, already shown to control the G1-S checkpoint, may also influence aspects of G2-M arrest. These data indicate an opportunity for therapeutic gain by combining DNA-damaging agents with compounds that disrupt G2-M arrest in tumors lacking functional p53.
    [Abstract] [Full Text] [Related] [New Search]