These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual pathways for tactile sensory information to thoracic interneurons in the cockroach.
    Author: Pollack AJ, Ritzmann RE, Watson JT.
    Journal: J Neurobiol; 1995 Jan; 26(1):33-46. PubMed ID: 7714524.
    Abstract:
    The escape system of the American cockroach is both fast and directional. In response to wind stimulation both of these characteristics are largely due to the properties of the ventral giant interneurons (vGIs), which conduct sensory information from the cerci on the rear of the animal to type A thoracic interneurons (TIAs) in the thoracic ganglia. The cockroach also escapes from tactile stimuli, and although vGIs are not involved in tactile-mediated escapes, the same thoracic interneurons process tactile sensory information. The response of TIAs to tactile information is typically biphasic. A rapid initial depolarization is followed by a longer latency depolarization that encodes most if not all of the directional information in the tactile stimulus. We report here that the biphasic response of TIAs to tactile stimulation is caused by two separate conducting pathways from the point of stimulation to the thoracic ganglia. Phase 1 is generated by mechanical conduction along the animal's body cuticle or other physical structures. It cannot be eliminated by complete lesion of the nerve cord, and it is not evoked in response to electrical stimulation of abdominal nerves that contain the axons of sensory receptors in abdominal segments. However, it can be eliminated by lesioning the abdominal nerve cord and nerve 7 of the metathoracic ganglion together, suggesting that the relevant sensory structures send axons in nerve 7 and abdominal nerves of anterior abdominal ganglia. Phase 2 of the TIA tactile response is generated by a typical neural pathway that includes mechanoreceptors in each abdominal segment, which project to interneurons with axons in either abdominal connective. Those interneurons with inputs from receptors that are ipsilateral to their axon have a greater influence on TIAs than those that receive inputs from the contralateral side. The phase 1 response has an important role in reducing initiation time for the escape response. Animals in which the phase 2 pathway has been eliminated by lesion of the abdominal nerve cord are still capable of generating a partial startle response with a typically short latency even when stimulated posterior to the lesion.
    [Abstract] [Full Text] [Related] [New Search]