These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biophysical and pharmacological characterization of inwardly rectifying K+ currents in rat spinal cord astrocytes.
    Author: Ransom CB, Sontheimer H.
    Journal: J Neurophysiol; 1995 Jan; 73(1):333-46. PubMed ID: 7714576.
    Abstract:
    1. Whole cell and cell-attached patch-clamp recordings were obtained from rat spinal cord astrocytes maintained in culture for 6-14 days. It was found that the resting conductance in these astrocytes is primarily due to inwardly rectifying K+ (Kir) channels. 2. Two types of astrocytic Kir channels were identified with single-channel conductances of approximately 28 and approximately 80 pS, respectively. Channels displayed some voltage dependence in their open probability, which was largest (0.8-0.9) near the K+ equilibrium potential (Ek) and decreased at more negative potentials. The resting potential closely followed Ek, so it can be assumed that Kir channels have a high open probability at the resting potential. 3. The conductance of inwardly rectifying K+ currents (Kir) depended strongly on [K+]o and was approximately proportional to the square-root of [K+]o. 4. Kir currents inactivated in a time- and voltage-dependent manner. The Na+ dependence of inactivation was studied with ion substitution experiments. Replacement of [Na+]o with choline or Li+ removed inactivation. This dependence of current inactivation on [Na+]o resembles the previously described block of Kir channels in other systems by [Na+]o. 5. Kir currents were also blocked in a dose-dependent manner by Cs+ (Kd = 189 microM at -140 mV), Ba2+ (Kd = 3.5 microM), and tetraethylammonium (TEA; 90% block at 10 mM) but were insensitive to 4-aminopyridine (4-AP; 5 mM). In the current-clamp mode, Ba2+ and TEA inhibition of Kir currents was associated with a marked depolarization, suggesting that Kir channel activity played a role in the establishment of the negative resting potential typical of astrocytes. 6. These biophysical features of astrocyte inwardly rectifying K+ channels are consistent with those properties required for their proposed involvement in [K+]o clearance: 1) high open probability at the resting potential, 2) increasing conductance with increasing [K+]o, and 3) rectification, e.g., channel closure, at positive potentials. It is proposed, therefore, that the dissipation of [K+]o following neuronal activity is mediated primarily by the activity of astrocytic Kir channels.
    [Abstract] [Full Text] [Related] [New Search]