These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphorylation of DARPP-32, a dopamine- and cAMP-regulated phosphoprotein, by casein kinase I in vitro and in vivo.
    Author: Desdouits F, Cohen D, Nairn AC, Greengard P, Girault JA.
    Journal: J Biol Chem; 1995 Apr 14; 270(15):8772-8. PubMed ID: 7721783.
    Abstract:
    DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, M(r) = 32,000) is a potent inhibitor of protein phosphatase-1 when it is phosphorylated on Thr-34 by cAMP-dependent protein kinase. DARPP-32 is highly enriched in some specific cell populations such as striatonigral neurons and choroid plexus epithelial cells. Here we show that recombinant rat DARPP-32 is phosphorylated by casein kinase I on seryl residues to a stoichiometry of approximately 2 mol of phosphate/mol of protein. DARPP-32 is one of the best known substrates for casein kinase I (Km = 3.4 +/- 0.3 microM), whereas the homologous phosphatase-1 inhibitor, inhibitor-1, is not. Phosphorylation of DARPP-32 by casein kinase I does not alter its ability to inhibit protein phosphatase-1. Residues phosphorylated by casein kinase I were identified as Ser-137 and Ser-189 by site-directed mutagenesis and by protein sequencing. Ser-137 and the preceding stretch of 16-18 acidic residues are conserved in DARPP-32 among all species examined, whereas Ser-189 is not. Phosphorylation of Ser-137 induces an unusual increase in DARPP-32 electrophoretic mobility in polyacrylamide gels in the presence of SDS. In striatonigral neurons, DARPP-32 is phosphorylated on Ser-137 and the stoichiometry of phosphorylation on this residue in vivo appears to be higher in the substantia nigra (axon terminals) than in the striatum (soma and dendrites). These results indicate that casein kinase I is highly active in striatonigral neurons in which it may play important roles, including in protein phosphatase-1 modulation via phosphorylation of DARPP-32.
    [Abstract] [Full Text] [Related] [New Search]