These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Integrity of intermediate filaments is associated with the development of acquired thermotolerance in 9L rat brain tumor cells. Author: Lee YC, Lai YK. Journal: J Cell Biochem; 1995 Jan; 57(1):150-62. PubMed ID: 7721954. Abstract: Withangulatin A (WA), a newly discovered withanolide isolated from an antitumor Chinese herb, has been shown to be a vimentin intermediate filament-targeting drug by using immunofluorescence microscopy. Together with cytochalasin D and colchicine, these drugs were employed to investigate the importance of vimentin intermediate filaments, actin filaments, and microtubules in the development of acquired thermotolerance in 9L rat brain tumor cells treated at 45 degrees C for 15 min (priming heat-shock). Acquired thermotolerance was abrogated in cells incubated with WA before the priming heat-shock but it could be detected in cells treated with WA after the priming heat-shock. In contrast, cytochalasin D and colchicine do not interfere with the development of thermotolerance at all. The intracellular localizations of vimentin and the constitutive heat-shock protein70 (HSC70) in treated cells were examined by using immunofluorescence microscopy and detergent-extractability studies. In cells treated with WA before the priming heat-shock, vimentin IFs were tightly aggregated around the nucleus and unable to return to their normal organization after a recovery under normal growing conditions. In contrast, the IF network in cells treated with WA after the priming heat-shock was able to reorganize into filamentous form after a recovery period, a behavior similar to that of the cells treated with heat-shock only. HSC70 was found to be co-localized with vimentin during these changes. It is suggested that the integrity of intermediate filaments is important for the development of thermotolerance and that HSC70 may be involved in this process by stabilizing the intermediate filaments through direct or indirect binding.[Abstract] [Full Text] [Related] [New Search]