These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ATP causes release of intracellular Ca2+ via the phospholipase C beta/IP3 pathway in astrocytes from the dorsal spinal cord. Author: Salter MW, Hicks JL. Journal: J Neurosci; 1995 Apr; 15(4):2961-71. PubMed ID: 7722640. Abstract: Calcium signaling within astrocytes in the CNS may play a role comparable to that of electrical signaling within neurons. ATP is a molecule known to produce Ca2+ responses in astrocytes, and has been implicated as a mediator of intercellular Ca2+ signaling in other types of nonexcitable cells. We characterized the signal transduction pathway for ATP-evoked Ca2+ responses in cultured astrocytes from the dorsal spinal cord. Nearly 100% of these astrocytes respond to extracellularly applied ATP, which causes release of Ca2+ from an intracellular pool that is sensitive to thapsigargin and insensitive to caffeine. We found that intracellular administration of IP3 also caused release of Ca2+ from a thapsigargin-sensitive intracellular pool, and that IP3 abolished the response to ATP. The ATP-evoked Ca2+ response was blocked by the IP3 receptor antagonist heparin, applied intracellularly, but not by N-desulfated heparin, which is not an antagonist at these receptors. The Ca2+ response caused by ATP was also blocked by a phospholipase C inhibitor, U-73122, but not by its inactive analog, U-73343. Increases in [Ca2+]i were elicited by intracellular application of activators of heterotrimeric G-proteins, GTP gamma S and AIF4-. On the other hand, [Ca2+], was unaffected by a G-protein inhibitor, GDP beta S, but it did abolish the Ca2+ response to ATP. Pretreating the cultures with pertussis toxin did not affect responses to ATP. Our results indicate that in astrocytes ATP-evoked release of intracellular Ca2+ is mediated by IP3 produced as a result of activating phospholipase C coupled to ATP receptors via a G-protein that is insensitive to pertussis toxin. ATP is known to be released under physiological and pathological circumstances, and therefore signaling via the PLC-IP3 pathway in astrocytes is a potentially important mechanism by which ATP may play a role in CNS function.[Abstract] [Full Text] [Related] [New Search]