These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrical field distribution within the injured cat spinal cord: injury potentials and field distribution.
    Author: Khan T, Myklebust J, Swiontek T, Sayers S, Dauzvardis M.
    Journal: J Neurotrauma; 1994 Dec; 11(6):699-710. PubMed ID: 7723069.
    Abstract:
    This study investigated the spontaneous injury potentials measured after contusion or transection injury to the cat spinal cord. In addition, the distribution of electrical field potentials on the surface and within the spinal cord were measured following applied electrical fields after transection and contusion injuries. After transection of the spinal cord, the injury potentials were -19.8 +/- 2.6 mV; after contusion of the spinal cord, the injury potentials were -9.5 +/- 2.2 mV. These potentials returned to control values within 2.5-4h after injury. The electrical field distribution measured on the dorsal surface, as well as within the spinal cord, after the application of a 10 microA current, showed little difference between contusion and transection injuries. Scalar potential fields were measured using two configurations of stimulating electrodes: dorsal to dorsal (D-D), in which both electrodes were placed epidurally on the dorsal surface of the spinal cord, and ventral to dorsal (V-D), in which one electrode was placed dorsally and one ventrally. As reported in normal uninjured cats, the total current in the midsagittal plane for the D-D configuration was largely confined to the dorsal portion of the spinal cord; with the V-D configuration, the current distribution was uniform throughout the spinal cord. In the injured spinal cord, the equipotential lines midway between the stimulating electrodes have a wider separation than in the uninjured spinal cord. Because the magnitude of the electrical field E is equal to the current density J multiplied by the resistivity r, this suggests that either the current density is reduced or that the resistivity is reduced.
    [Abstract] [Full Text] [Related] [New Search]