These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modulation by iron loading and chelation of the uptake of non-transferrin-bound iron by human liver cells. Author: Parkes JG, Randell EW, Olivieri NF, Templeton DM. Journal: Biochim Biophys Acta; 1995 Apr 13; 1243(3):373-80. PubMed ID: 7727512. Abstract: Hepatic non-transferrin-bound Fe (NTBI) flux and its regulation were characterized by measuring the uptake of Fe from [59Fe]/nitrilotriacetate (NTA) complexes in control and Fe-loaded cultures of human hepatocellular carcinoma cells (HepG2). Exposure to ferric ammonium citrate (FAC) for 1 to 7 days resulted in a time- and dose-dependent increase in the rate of NTBI uptake. In contrast to previous studies showing a dependence of the rate of Fe uptake on extracellular Fe, this was positively correlated with total cellular Fe content. The Fe3+ chelating agents deferoxamine (DFO), 1,2-dimethyl-3-hydroxypyrid-4-one (CP 020) and 1,2-diethyl-3-hydroxypyrid-4-one (CP 094) prevented or diminished the increase in NTBI transport when present during Fe loading and reversed the stimulation in pre-loaded cells in relation to their abilities to decrease intracellular iron. Although saturation of the Fe uptake process was not achieved in control cells, kinetic modelling to include linear diffusion-controlled processes yielded estimated parameters of Km = 4.3 microM and Vmax = 2.6 fmol/micrograms protein/min for the underlying process. There was a significant increase in the apparent Vmax (31.2 fmol/micrograms protein per min) for NTBI uptake in Fe-loaded cells, suggesting that Fe loading increases the number of a rate-limiting carrier site for Fe. Km also increased to 15.2 microM, comparable to values reported when whole liver is perfused with FeSO4. We conclude that HepG2 cells possess a transferrin-independent mechanism of Fe accumulation that responds reversibly to a regulatory intracellular Fe pool.[Abstract] [Full Text] [Related] [New Search]