These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impaired function of inhibitory G proteins during acute myocardial ischemia of canine hearts and its reversal during reperfusion and a second period of ischemia. Possible implications for the protective mechanism of ischemic preconditioning.
    Author: Niroomand F, Weinbrenner C, Weis A, Bangert M, Schwencke C, Marquetant R, Beyer T, Strasser RH, Kübler W, Rauch B.
    Journal: Circ Res; 1995 May; 76(5):861-70. PubMed ID: 7729003.
    Abstract:
    A brief antecedent period of myocardial ischemia and reperfusion can delay cellular injury during a subsequent ischemic condition. Recent observations suggest that this protective mechanism depends on the continued activation of adenosine A1 receptors and Gi proteins. During acute myocardial ischemia, sufficient amounts of adenosine for maximal activation of adenosine A1 receptors are released, independent of a preconditioning ischemia. Hence, the protective mechanism of ischemic preconditioning may not exclusively be explained by activation of adenosine A1 receptors. As a working hypothesis, an increased responsiveness of Gi proteins toward receptor-mediated activation, leading to an increased response of Gi-regulated effectors, was tested in this study. In 47 anesthetized dogs, ischemia was induced by proximal ligation of the left anterior descending coronary artery. Animals underwent either a single period of 5 minutes of ischemia (n = 9), a single period of 15 minutes of ischemia (n = 10), 5 minutes of ischemia followed by 15 minutes of reperfusion (n = 8), 15 minutes of ischemia followed by 60 minutes of reperfusion (n = 5), or 5 minutes of ischemia followed by 15 minutes of reperfusion and a second period of 5 minutes of ischemia (n = 15). Sarcolemmal membranes were prepared from the central ischemic area and from the posterior left ventricular wall, which served as the control. During ischemia, carbochol-stimulated GTPase decreased by 38% (control, 33.5 +/- 17.7; ischemia, 24.2 +/- 15 pmol.min-1.mg protein-1; n = 9; P < .001). The decrease in carbachol-stimulated GTPase activity was associated with a 45% decrease in carbachol-mediated inhibition of adenylyl cyclase (control, 28.9 +/- 2.4% maximal inhibition; ischemia, 15.1 +/- 2.6% maximal inhibition; n = 5; P < .001). Prolongation of the ischemic period to 15 minutes did not lead to a further reduction of the Gi-mediated signal transduction. The binding properties of muscarinic receptors were not affected by ischemia. Furthermore, as demonstrated by carbachol-stimulated binding of [gamma-35S]GTP to sarcolemmal membranes, high- and low-affinity binding sites for the muscarinic antagonist carbachol, the EC50 for carbachol-stimulated GTPase activity and the substrate dependency of the high-affinity GTPase, the interaction between muscarinic receptors and inhibitory G proteins, and GTP binding to G proteins were not altered (n = 14). Immunoblotting with alpha 1- and alpha 2-specific antibodies did not indicate a loss of Gi proteins during ischemia that could explain the reduced GTPase activity.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]