These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: New methods of energy efficient radon mitigation. Author: Fisk WJ, Prill RJ, Wooley J, Bonnefous YC, Gadgil AJ, Riley WJ. Journal: Health Phys; 1995 May; 68(5):689-98. PubMed ID: 7730066. Abstract: Two new radon mitigation techniques are introduced and their evaluation in a field study complemented by numerical model predictions is described. Based on numerical predictions, installation of a sub gravel membrane at the study site resulted in a factor of 2 reduction in indoor radon concentrations. Experimental data indicated that installation of "short-circuit" pipes extending between the subslab gravel and outdoors caused an additional factor of 2 decrease in the radon concentration. Consequently, the combination of these two passive radon mitigation features, called the membrane and short-circuit (MASC) technique, was associated with a factor of 4 reduction in indoor radon concentration. The energy-efficient active radon mitigation method, called efficient active subslab pressurization (EASP), required only 20% of the fan energy of conventional active subslab depressurization and reduced the indoor radon concentration by approximately a factor of 15, including the numerically-predicted impact of the sub-gravel membrane.[Abstract] [Full Text] [Related] [New Search]