These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A study of the stabilization of the oxyanion of tetrahedral adducts by trypsin, chymotrypsin and subtilisin.
    Author: O'Connell TP, Malthouse JP.
    Journal: Biochem J; 1995 Apr 15; 307 ( Pt 2)(Pt 2):353-9. PubMed ID: 7733869.
    Abstract:
    Subtilisin and delta-chymotrypsin have been alkylated using 2-13C-enriched benzyloxycarbonylglycylglycylphenylalanylchloromethane. A single signal due to the 13C-enriched carbon was detected in both the intact subtilisin and delta-chymotrypsin derivatives. The signal titrated from 98.9 p.p.m. to 103.6 p.p.m. with a pKa value of 6.9 in the subtilisin derivative and it is assigned to a tetrahedral adduct formed between the hydroxy group of serine-221 and the inhibitor. The signal in the delta-chymotrypsin derivative titrated from 98.5 p.p.m. to 103.2 p.p.m. with a pKa value of 8.92 and it is assigned to a tetrahedral adduct formed between the hydroxy group of serine-195 and the inhibitor. In both derivatives the titration shift is assigned to the formation of the oxyanion of the tetrahedral adduct. delta-Chymotrypsin has been inhibited by benzyloxycarbonylphenylalanylchloromethane and two signals due to 13C-enriched carbons were detected. One of these signals titrated from 98.8 p.p.m. to 103.6 p.p.m. with a pKa value of 9.4 and it was assigned in the same way as in the previous delta-chymotrypsin derivative. The second signal had a chemical shift of 204.5 +/- 0.5 p.p.m. and it did not titrate from pH 3.5 to 9.0. This signal was assigned to alkylated methionine-192. We discuss how subtilisin and chymotrypsin could stabilize the oxyanion of tetrahedral adducts.
    [Abstract] [Full Text] [Related] [New Search]