These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carbohydrate structure analysis of batroxobin, a thrombin-like serine protease from Bothrops moojeni venom.
    Author: Lochnit G, Geyer R.
    Journal: Eur J Biochem; 1995 Mar 15; 228(3):805-16. PubMed ID: 7737180.
    Abstract:
    The carbohydrate side chains of batroxobin were liberated from tryptic glycopeptides by treatment with peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F, pyridylaminated and separated by two-dimensional HPLC. Neutral oligosaccharide derivatives obtained after desialylation were characterized by methylation analysis, liquid secondary-ion mass spectrometry, digestion with exoglycosidases and endoglycosidases and, in part, by acetolysis, whereas sialic acid constituents were identified by reverse-phase HPLC after conjugation with 1,2-diamino-4,5-methylene-dioxybenzene. The overall glycosylation status of the protein was studied by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The results revealed that batroxobin is heterogeneously glycosylated carrying predominantly diantennary, partially incomplete complex-type glycans in addition to hybrid-type species. Most glycans were core-fucosylated at C6 of the innermost GlcNAc. As a characteristic feature, galactose was completely replaced by GalNAc beta 4-substituents in complex-type antennae, the GlcNAc-residues of which were, in part, fucosylated at C3. Furthermore, evidence was obtained that suggested the presence of a novel type of glycoprotein-N-glycan comprising two GalNAc beta 4GlcNAc beta 4GlcNAc beta 2Man-antennae. Sialic acid residues represented a mixture of N-acetylneuraminic acid (Neu5Ac) and N-acetyl-4-O-acetylneuraminic acid (Neu4,5Ac2), which were exclusively linked to C3 of subterminal GalNAc. A precise assignment of these sialic acid derivatives to distinct oligosaccharide structures or antennae, however, was not carried out. Finally, MALDI-TOF-MS demonstrated that both potential N-glycosylation sites of batroxobin are substituted by carbohydrate chains. In conclusion, our studies revealed that this snake venom glycoprotein is characterized by a unique oligosaccharide pattern partly comprising novel structural elements.
    [Abstract] [Full Text] [Related] [New Search]