These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional interaction of c-Ets-1 and GHF-1/Pit-1 mediates Ras activation of pituitary-specific gene expression: mapping of the essential c-Ets-1 domain. Author: Bradford AP, Conrad KE, Wasylyk C, Wasylyk B, Gutierrez-Hartmann A. Journal: Mol Cell Biol; 1995 May; 15(5):2849-57. PubMed ID: 7739565. Abstract: The mechanism by which activation of common signal transduction pathways can elicit cell-specific responses remains an important question in biology. To elucidate the molecular mechanism by which the Ras signaling pathway activates a cell-type-specific gene, we have used the pituitary-specific rat prolactin (rPRL) promoter as a target of oncogenic Ras and Raf in GH4 rat pituitary cells. Here we show that expression of either c-Ets-1 or the POU homeo-domain transcription factor GHF-1/Pit-1 enhance the Ras/Raf activation of the rPRL promoter and that coexpression of the two transcription factors results in an even greater synergistic Ras response. By contrast, the related GHF-1-dependent rat growth hormone promoter fails to respond to Ras or Raf, indicating that GHF-1 alone is insufficient to mediate the Ras/Raf effect. Using amino-terminal truncations of c-Ets-1, we have mapped the c-Ets-1 region required to mediate the optimal Ras response to a 40-amino-acid segment which contains a putative mitogen-activated protein kinase site. Finally, dominant-negative Ets and GHF constructs block Ras activation of the rPRL promoter, and each blocks the synergistic activation mediated by the other partner protein, further corroborating that a functional interaction between c-Ets-1 and GHF-1 is required for an optimal Ras response. Thus, the functional interaction of a pituitary-specific transcription factor, GHF-1, with a widely expressed nuclear proto-oncogene product, c-Ets-1, provides one important molecular mechanism by which the general Ras signaling cascade can be interpreted in a cell-type-specific manner.[Abstract] [Full Text] [Related] [New Search]