These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural characterization of d(CAACCCGTTG) and d(CAACGGGTTG) mini-hairpin loops by heteronuclear NMR: the effects of purines versus pyrimidines in DNA hairpins. Author: Avizonis DZ, Kearns DR. Journal: Nucleic Acids Res; 1995 Apr 11; 23(7):1260-8. PubMed ID: 7739905. Abstract: The DNA decamers, d(CAACCCGTTG) and d(CAACGGGTTG) were studied in solution by proton and heteronuclear NMR. Under appropriate conditions of pH, temperature, salt concentration and DNA concentration, both decamers form hairpin conformations with similar stabilities [Avizonis and Kearns (1995) Biopolymers, 35, 187-200]. Both decamers adopt mini-hairpin loops, where the first and last four nucleotides are involved in Watson-Crick hydrogen bonding and the central two nucleotides, CC or GG respectively, form the loop. Through the use of proton-proton, proton-phosphorus and natural abundance proton-carbon NMR experiments, backbone torsion angles (beta, gamma and epsilon), sugar puckers and interproton distances were measured. The nucleotides forming the loops of these decamers were found to stack upon one another in an L1 type of loop conformation. Both show gamma tr and unusual beta torsion angles in the loop-closing nucleotide G7, as expected for mini-hairpin loop formation. Our results indicate that the beta and epsilon torsion angles of the fifth and sixth nucleotides that form the loop and the loop-closing nucleotide G7 are not in the standard trans conformation as found in B-DNA. Although the loop structures calculated from NMR-derived constraints are not well defined, the stacking of the bases in the two different hairpins is different. This difference in the base stacking of the loop may provide an explanation as to why the cytosine-containing hairpin is thermodynamically more stable than the guanine-containing hairpin.[Abstract] [Full Text] [Related] [New Search]