These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of acyl-CoA:cholesterol acyltransferase in Chinese hamster ovary (CHO) cells by short-chain ceramide and dihydroceramide.
    Author: Ridgway ND.
    Journal: Biochim Biophys Acta; 1995 Apr 28; 1256(1):39-46. PubMed ID: 7742354.
    Abstract:
    The biological activity of ceramide, an intermediate in the synthesis and catabolism of sphingolipids, has been shown to be mimicked by short-chain N-acyl analogues. A potential role for ceramide in modulating cholesterol esterification was investigated using a series of short-chain ceramides and dihydroceramides. Acyl-CoA:cholesterol acyltransferase (ACAT) in CHO cells was inhibited rapidly (< 30 min) and in a dose-dependent fashion by two N-acyl analogues of naturally occurring D-erythro-ceramide, N-acetyl-sphingosine (D-erythro-C2-ceramide) and N-hexanoyl-sphingosine (D-erythro-C6-ceramide). At 10 microM D-erythro-C2-ceramide, esterification of cholesterol was inhibited by 95% in CHO cells grown in delipidated serum, and 80-85% in cells grown in 25-hydroxycholesterol or human low-density lipoprotein (LDL). D-erythro-C2-Ceramide did not inhibit [14C]oleate-labelling of triacylglycerol and phospholipid. Inhibition of cholesterol esterification in cells and isolated membranes required the D-erythro (2S,3R) configuration (the L-threo isomer of C2-ceramide was not inhibitory) and an N-acyl group (sphingosine and sphinganine did not inhibit). DL-erythro-C2-Dihydroceramide was also a potent ACAT inhibitor in isolated membranes (IC50 0.2 microM) and cells indicating lack of requirement for a 4-trans double bond. Consistent with results for C2-ceramides, DL-threo-C2-dihydroceramide was not inhibitory in cells or in vitro. Long-chain ceramide and N-palmitoyl-dihydroceramide did not inhibit ACAT in isolated membranes. Compared to D-erythro-C2-ceramide, D-erythro-C6- and C4-ceramide were slightly weaker inhibitors of ACAT in isolated membranes. Thus, N-acyl chain length could influence inhibition, either by altering the effective concentration of ceramide in membranes or affinity for the ACAT enzyme. Short-chain ceramides and dihydroceramides are the first ACAT inhibitors described with structural similarity to a naturally occurring compound.
    [Abstract] [Full Text] [Related] [New Search]