These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Long-term potentiation and depression of synaptic transmission in rat posterior cingulate cortex.
    Author: Hedberg TG, Stanton PK.
    Journal: Brain Res; 1995 Jan 30; 670(2):181-96. PubMed ID: 7743185.
    Abstract:
    We used stimulation of corpus callosum (CAL) and the subiculo-cingulate tract (SCT), in an in vitro brain slice preparation, to study activity-dependent changes in synaptic efficacy in posterior cingulate cortex (PCC). SCT stimulation monosynaptically excites the apical dendrites of deep laminae (V-VI) pyramidal neurons, while CAL afferents drive these same cells via synapses on their basal dendrites. In contrast, most superficial laminae (II/III-IV) pyramids appear to be driven polysynaptically via ascending axonal collaterals of deep pyramids. In slices retaining these connectivities, we contrasted characteristics of synaptic plasticity in superficial vs deep laminae field and intracellular potentials evoked by conditioning stimuli given at frequencies of 100, 20, 8, 5 and 1 Hz. Tetanic stimulation (100 Hz) of SCT or CAL yielded homosynaptic long-term potentiation (LTP) of each pathway, while stimulus trains of 8-20 Hz did not. 1-5 Hz stimulation of SCT and CAL elicited homosynaptic long-term depression (LTD) of synaptic strength in each pathway. Associative LTD was induced by interleaving 5 Hz pulses to the SCT pathway with 100 Hz theta-burst stimulation of CAL, but was not induced when these stimulus loci were switched. Heterosynaptic non-associative LTD was also observed in the alternate pathway following tetanization of either SCT or CAL. In all cases, LTP and LTD were observed only in deep laminae recordings. In contrast, superficial records showed only paired-pulse facilitation and short-term post-tetanic potentiation. In in vivo experiments in anaesthetized rats, PCC responses to SCT stimulation were contrasted with responses to stimulation of anteroventral and anterodorsal thalamic nuclei (AV/AD). SCT-elicited field potentials closely resembled those evoked in the slice, with maximal amplitude tuned to the 4-8 Hz frequency band. AV/AD stimulation elicited field potentials which were not frequency tuned. Overall, these data suggest that the acute circuit properties of PCC superficial laminae, modulated by thalamic input and synaptic plasticity in deep laminae, can transform hippocampal synaptic inflow before relaying it to extracingulate targets.
    [Abstract] [Full Text] [Related] [New Search]