These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of lactation on the signal transduction systems regulating lipolysis in sheep subcutaneous and omental adipose tissue.
    Author: Vernon RG, Doris R, Finley E, Houslay MD, Kilgour E, Lindsay-Watt S.
    Journal: Biochem J; 1995 May 15; 308 ( Pt 1)(Pt 1):291-6. PubMed ID: 7755576.
    Abstract:
    The effect of lactation on the regulation of lipolysis by beta- and alpha 2-adrenergic agents and by adenosine has been investigated. When changes in adipocyte mean cell volume (which decreases with lactation) are allowed for, lactation increased the maximum response both to beta-adrenergic agents and to the adenosine analogue N6-phenylisopropyladenosine, but had no apparent effect on the responsiveness of the alpha 2-adrenergic system in both subcutaneous and omental adipocytes. For subcutaneous adipocytes, there was no significant change in the number of beta-adrenergic or alpha 2-adrenergic receptors, but the amount of Gs and the maximum (forskolin-stimulated) adenylate cyclase activity were increased by lactation. In contrast, in omental adipocytes, the number of beta- (but not alpha 2-) adrenergic receptors and the amount of Gs were increased, whereas forskolin-stimulated adenylate cyclase activity was unchanged by lactation. In both types of adipocyte, cyclic AMP phosphodiesterase and total protein kinase A activities were unchanged. Lactation had no effect on the number of adenosine receptors but increased the amounts of the Gi isoforms expressed in both types of adipocyte. These various adaptations differ markedly in a number of respects from those described previously in the rat. Lactation, then, while having a similar overall effect on the response to beta-adrenergic agonists of adipocytes, achieves this by depot-specific mechanisms. In contrast, changes in response to adenosine appear to involve the same mechanism in the two depots investigated.
    [Abstract] [Full Text] [Related] [New Search]