These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glycosphingolipid acyl chain order profiles: substituent effects. Author: Morrow MR, Singh D, Grant CW. Journal: Biochim Biophys Acta; 1995 May 04; 1235(2):239-48. PubMed ID: 7756331. Abstract: Fatty acid order parameter profiles were determined by 2H-NMR in order to characterize the arrangement and behaviour of the hydrophobic region of glycosphingolipids (GSLs) dispersed as minor components in phosphatidylcholine/cholesterol membranes. Direct comparison was made amongst species with important fatty acid structural features found in natural glycosphingolipids. Galactosyl ceramides (GalCer) were prepared by partial synthesis having 18:0[d35], D-alpha-OH 18:0[d34], 18:1[d33], and 24:0[d47] fatty acids. Unsonicated multilamellar liposomes of the common natural phospholipid, 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), containing 23% cholesterol, were employed as host matrix. Smoothed profiles of the order parameter, SCD, for 18:0[d35] GalCer proved to be very similar to profiles known for 16:0 and 18:0 fatty acids of glycerolipids in cholesterol-containing bilayers. In general, order along the GSL chain was slightly higher than anticipated for equivalent chain segments in phospholipids. Order parameter profiles for the GSL 18-carbon saturated fatty acids were strikingly similar. However, small quantitative differences were found for glycolipids having D- and L-alpha-hydroxylation at C-2 - the D-stereoisomer being marginally more ordered in the plateau region. Although order profiles have not been reported for unsaturated glycerolipid fatty acids in cholesterol-rich membranes, spectra of 18:1[d33] GalCer appeared to be assignable by applying known ordering effects of cholesterol to existing data for unsaturated glycerolipids. The unsaturated chain was found to be less ordered than saturated 18-carbon chains toward the membrane surface, but more ordered in the region of the bilayer midplane. The ordering may result from cholesterol-induced restriction of isomerisation at the cis-double bond, and represents an apparent exaggeration of a phenomenon known for glycerolipids. Addition of an 'extra' 6 carbons to the fatty acid (24:0[d47] GalCer) produced no significant effect on the order profile to a membrane depth of C-12-C-13. These results suggest that fluid membrane area requirements for GSLs with saturated fatty acids are not strongly influenced by the nature of that fatty acid when the GSL is a minor component. Order parameter profiles for the very long chain GSL deviated to higher order below this point, and formed a second 'plateau' of reduced negative slope toward the methyl terminus: this is characteristic of profiles for very long chain GSLs. These features were essentially unchanged over a range of temperatures providing different degrees of spatial constraint.[Abstract] [Full Text] [Related] [New Search]