These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP).
    Author: Donate LE, Gherardi E, Srinivasan N, Sowdhamini R, Aparicio S, Blundell TL.
    Journal: Protein Sci; 1994 Dec; 3(12):2378-94. PubMed ID: 7756992.
    Abstract:
    Plasminogen-related growth factors, a new family of polypeptide growth factors with the basic domain organization and mechanism of activation of the blood proteinase plasminogen, include hepatocyte growth factor/scatter factor (HGF/SF), a potent effector of the growth, movement, and differentiation of epithelia and endothelia, and hepatocyte growth factor-like/macrophage stimulating protein (HGF1/MSP), an effector of macrophage chemotaxis and phagocytosis. Phylogeny of the serine proteinase domains and analysis of intron-exon boundaries and kringle sequences indicate that HGF/SF, HGF1/MSP, plasminogen, and apolipoprotein (a) have evolved from a common ancestral gene that consisted of an N-terminal domain corresponding to plasminogen activation peptide (PAP), 3 copies of the kringle domain, and a serine proteinase domain. Models of the N domains of HGF/SF, HGF1/MSP, and plasminogen, characterized by the presence of 4 conserved Cys residues forming a loop in a loop, have been modeled based on disulfide-bond constraints. There is a distinct pattern of charged and hydrophobic residues in the helix-strand-helix motif proposed for the PAP domain of HGF/SF; these may be important for receptor interaction. Three-dimensional structures of the 4 kringle and the serine proteinase domains of HGF/SF were constructed by comparative modeling using the suite of programs COMPOSER and were energy minimized. Docking of a lysine analogue indicates a putative lysine-binding pocket within kringle 2 (and possibly another in kringle 4). The models suggest a mechanism for the formation of a noncovalent HGF/SF homodimer that may be responsible for the activation of the Met receptor. These data provide evidence for the divergent evolution and structural similarity of plasminogen, HGF/SF, and HGF1/MSP, and highlight a new strategy for growth factor evolution, namely the adaptation of a proteolytic enzyme to a role in receptor activation.
    [Abstract] [Full Text] [Related] [New Search]