These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms.
    Author: Welch RW, Wang Y, Crossman A, Park JB, Kirk KL, Levine M.
    Journal: J Biol Chem; 1995 May 26; 270(21):12584-92. PubMed ID: 7759506.
    Abstract:
    It is unknown whether ascorbate alone (vitamin C), its oxidized metabolite dehydroascorbic acid alone, or both species are transported into human cells. This problem was addressed using specific assays for each compound, freshly synthesized pure dehydroascorbic acid, the specially synthesized analog 6-chloroascorbate, and a new assay for 6-chloroascorbate. Ascorbate and dehydroascorbic acid were transported and accumulated distinctly; neither competed with the other. Ascorbate was accumulated as ascorbate by sodium-dependent carrier-mediated active transport. Dehydroascorbic acid transport and accumulation as ascorbate was at least 10-fold faster than ascorbate transport and was sodium-independent. Once transported, dehydroascorbic acid was immediately reduced intracellularly to ascorbate. The analog 6-chloroascorbate had no effect on dehydroascorbic acid transport but was a competitive inhibitor of ascorbate transport. The Ki for 6-chloroascorbate (2.9-4.4 microM) was similar to the Km for ascorbate transport (9.8-12.6 microM). 6-Chloroascorbate was itself transported and accumulated in fibroblasts by a sodium-dependent transporter. These data provide new information that ascorbate and dehydroascorbic acid are transported into human neutrophils and fibroblasts by two distinct mechanisms and that the compound available for intracellular utilization is ascorbate.
    [Abstract] [Full Text] [Related] [New Search]