These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: trans-dominant inhibition of poly(ADP-ribosyl)ation sensitizes cells against gamma-irradiation and N-methyl-N'-nitro-N-nitrosoguanidine but does not limit DNA replication of a polyomavirus replicon.
    Author: Küpper JH, Müller M, Jacobson MK, Tatsumi-Miyajima J, Coyle DL, Jacobson EL, Bürkle A.
    Journal: Mol Cell Biol; 1995 Jun; 15(6):3154-63. PubMed ID: 7760811.
    Abstract:
    Poly(ADP-ribosyl)ation is a posttranslational modification of nuclear proteins catalyzed by poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30), with NAD+ serving as the substrate. PARP is strongly activated upon recognition of DNA strand breaks by its DNA-binding domain. Experiments with low-molecular-weight inhibitors of PARP have led to the view that PARP activity plays a role in DNA repair and possibly also in DNA replication, cell proliferation, and differentiation. Accumulating evidence for nonspecific inhibitor effects prompted us to develop a molecular genetic system to inhibit PARP in living cells, i.e., to overexpress selectively the DNA-binding domain of PARP as a dominant negative mutant. Here we report on a cell culture system which allows inducible, high-level expression of the DNA-binding domain. Induction of this domain leads to about 90% reduction of poly(ADP-ribose) accumulation after gamma-irradiation and sensitizes cells to the cytotoxic effect of gamma-irradiation and of N-methyl-N'-nitro-N-nitrosoguanidine. In contrast, induction does not affect normal cellular proliferation or the replication of a transfected polyomavirus replicon. Thus, trans-dominant inhibition of the poly(ADP-ribose) accumulation occurring after gamma-irradiation or N-methyl-N'-nitro-N-nitrosoguanidine is specifically associated with a disturbance of the cellular recovery from the inflicted damage.
    [Abstract] [Full Text] [Related] [New Search]