These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immunomodulation of pancreatic islet allografts in mice with CTLA4Ig secreting muscle cells. Author: Chahine AA, Yu M, McKernan MM, Stoeckert C, Lau HT. Journal: Transplantation; 1995 May 15; 59(9):1313-8. PubMed ID: 7762068. Abstract: In an effort to create a model of in vivo production of immunosuppressants, we have transfected C2C12 muscle cells (H-2k) with the cDNA for CTLA4Ig, a fusion protein that prevents the activation of T cells by blocking the costimulatory signal transduced by the T cell receptors CD28 and CTLA4. CTLA4Ig-secreting clones were cotransplanted with islets as composite grafts in the renal subcapsular space of diabetic mice. When the myoblasts were syngeneic to C3H/HeJ hosts (H-2k), there was a significant prolongation of survival of allogeneic C57Bl/6J (H-2b) islets from a mean 11.0 days to 31.7 days. When the graft was completely allogeneic (H-2k myoblasts and islets into H-2b recipients), there was no benefit in survival. A transient blockade of LFA-1 with the mAb M17 was synergistic in this combination: 8 out of 12 C57Bl/6J recipients achieved long-term acceptance. Systemic CTLA4Ig levels were detected up to 60 days after transplantation. In conclusion, we have shown that C2C12 muscle cells can be genetically engineered to secrete functional CTLA4Ig and that they can be used as a gene reservoir for the continuous in vivo production of CTLA4Ig to modulate the survival of islet cell allografts.[Abstract] [Full Text] [Related] [New Search]