These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Primary and three-dimensional structure of lactotransferrin (lactoferrin) glycans. Author: Spik G, Coddeville B, Mazurier J, Bourne Y, Cambillaut C, Montreuil J. Journal: Adv Exp Med Biol; 1994; 357():21-32. PubMed ID: 7762433. Abstract: In order to establish relationships between glycan structure and biological activity, the authors undertook a comparative study of the glycan primary structure of different transferrins from several species. By associating permethylation-mass spectrometry and 1H-NMR spectroscopy, the primary structure of the human, bovine, caprine, murine and porcine lactotransferrin glycans were determined. Using the same methods, the glycan structure of 9 serotransferrins was determined. The results obtained led to the conclusion that glycans are specific for each transferrin and, for a given transferrin, specific to the species. No relationship could be established between primary structure and function of transferrin glycans. Glycan molecular modelling, molecular dynamics simulations and X-ray diffraction studies of free glycans confirm the mobility in space of antennae. In contrast, the glycan associated with a protein is immobilized into only one conformation, as in the case of glycan-lectin associations or of "internal" glycan-protein interactions, like in rabbit serotransferrin, in which the glycan forms a bridge between the two lobes of the peptide chain, and maintains the protein in a biologically active conformation. In the case of human sero- and lactotransferrins, the glycans are in an external position on the molecules and could play a role of recognition signals.[Abstract] [Full Text] [Related] [New Search]