These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Conformational analysis of the lipophilic antifolate trimetrexate. Author: Hoffman VA, Welsh WJ. Journal: Cancer Biochem Biophys; 1995 Jan; 14(4):281-95. PubMed ID: 7767902. Abstract: The conformational properties of the lipophilic antifolate trimetrexate (TMQ) were calculated and compared to the structurally-analogous prototypical antifolate methotrexate (MTX) using both empirical force-field and AM1 quantum mechanical methods. The conformational preferences of TMQ and MTX are diametrically opposed with respect to the bridge-system set of torsion angles tau 1, tau 2: TMQ prefers gauche, trans while MTX prefers approximately trans, gauche. These predictions are consistent with the observed crystal structures of TMQ (i.e., tau 1 = 79 degrees, tau 2 = 178 degrees) and of DHFR-bound MTX (i.e., tau 1 = -157 degrees, tau 2 = 57 degrees in L. casei). The crystal structure of MTX.4H2O deviates from this pattern with tau 1 closer to cis (i.e., 39 degrees) than the predicted trans, yet this near-cis conformation is driven by intermolecular hydrogen-bonding and electrostatic forces operative in the MTX crystal. As a consequence of these strong intermolecular forces, MTX incurs 1.8 kcal/mole in conformational-strain energy in its crystalline form. In contrast, TMQ experiences virtually no conformational strain in its crystalline form. This disparity is attributed to two distinctions between TMQ and MTX: (i) MTX crystallizes as a zwitterion while TMQ crystallizes as the free base, and (ii) the hydrophilic glutamate tail in MTX is replaced by three lipophilic trimethoxy groups in TMQ. The corresponding conformational-strain energy of DHFR-bound MTX is 2.0 kcal/mole while that of DHFR-bound TMQ is only 0.65 kcal/mole based on the assumption that the latter adopts the same bridge conformation as the former. This cost in conformational-strain energy for TMQ and MTX is paid at the expense of their respective free energies of binding of DHFR. Consequently, the present study offers the possibility of designing a new class of antifolates which are conformationally strain-free when bound to DHFR and thereby more effective as chemotherapeutic agents.[Abstract] [Full Text] [Related] [New Search]