These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of action of gamma-aminobutyric acid on frog melanotrophs.
    Author: Desrues L, Vaudry H, Lamacz M, Tonon MC.
    Journal: J Mol Endocrinol; 1995 Feb; 14(1):1-12. PubMed ID: 7772233.
    Abstract:
    We have previously demonstrated that gamma-aminobutyric acid (GABA) is a potent regulator of secretory and electrical activity in melanotrophs of the frog pituitary. The aim of the present study was to investigate the intracellular events which mediate the response of melanotrophs to GABA. We first observed that GABA (1-100 microM) inhibited both basal and forskolin-stimulated cyclic AMP (cAMP) formation. The inhibitory effect of GABA on cAMP levels was mimicked by the GABAB receptor agonist baclofen (100 microM) and totally abolished by a 4-h pretreatment with pertussis toxin (0.1 microgram/ml). In contrast, the specific GABAA agonist 3-aminopropane sulphonic acid (3APS) did not affect cAMP production. Both GABA and 3APS (100 microM each) induced a biphasic effect on alpha-MSH release from perifused frog neurointermediate lobes, i.e. a transient stimulation followed by an inhibition of alpha-MSH secretion. Administration of forskolin (10 microM) prolonged the stimulatory phase and attenuated the inhibitory phase evoked by GABA and 3APS, indicating that cAMP modulates the response of melanotrophs to GABAA agonists. Ejection of 3APS (1 microM) in the vicinity of cultured melanotrophs caused a massive increase in intracellular calcium concentration ([Ca2+]i). The stimulatory effect of 3APS on [Ca2+]i was abolished when the cells were incubated in a chloride-free medium. The formation of inositol trisphosphate was not affected by 3APS, suggesting that the increase in [Ca2+]i cannot be ascribed to mobilization of intracellular calcium stores. omega-Conotoxin did not alter the secretory response of frog neurointermediate lobes to 3APS, while nifedipine blocked the stimulation of alpha-MSH secretion induced by 3APS. In conclusion, the present data indicate that, in frog pituitary melanotrophs, (i) the stimulatory phase evoked by GABAA agonists can be accounted for by an influx of calcium through L-type calcium channels, (ii) the inhibitory effect evoked by GABAB agonists can be ascribed to inhibition of adenylate cyclase activity and (iii) cAMP attenuates the inhibitory phase evoked by GABAA agonists. Taken together, these data suggest that activation of GABAB receptors may modulate GABAA receptor function.
    [Abstract] [Full Text] [Related] [New Search]