These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic regulation of nitrogen fixation in Rhizobium meliloti.
    Author: Cebolla A, Palomares AJ.
    Journal: Microbiologia; 1994 Dec; 10(4):371-84. PubMed ID: 7772292.
    Abstract:
    The soil bacterium Rhizobium meliloti fixes dinitrogen when associated with root nodules formed on its plant host, Medicago sativa (alfalfa). The expression of most of the known genes required for nitrogen fixation (nif and fix genes), including the structural genes for nitrogenase, is induced in response to a decrease in oxygen concentration. Induction of nif and fix gene expression by low oxygen is physiologically relevant because a low-oxygen environment is maintained in root nodules to prevent inactivation of the highly oxygen-sensitive nitrogenase enzyme. The genes responsible for sensing and transducing the low oxygen signal, fixL and fixJ, encode proteins (FixL and FixJ, respectively) that are homologous to a large family of bacterial proteins involved in signal transduction, the two component regulatory system proteins. The two components consist of a sensor protein, to which FixL is homologous, and a response regulator protein, to which FixJ is homologous. The sensor protein respond to an activating signal by autophosphorylating and then transferring the phosphate to its cognate response regulator protein. The phosphorylated response regulator, which is often a transcriptional activator, is then able to activate its target. A cascade model of nif and fix gene regulation in R. meliloti has been proposed, whereby FixL acts as an oxygen sensor as the initial event in the cascade and transmits this information to FixJ. FixJ, which possesses a putative helix-turn-helix DNA-binding motif, then activates transcription of the nifA and fixK genes. The nifA and fixK gene products, are transcriptional activators of at least 14 other nif and fix genes.
    [Abstract] [Full Text] [Related] [New Search]