These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Unexpected prosecretory action component of loperamide at mu-opioid receptors in the guinea-pig colonic mucosa in vitro. Author: Kromer W. Journal: Br J Pharmacol; 1995 Feb; 114(4):739-44. PubMed ID: 7773532. Abstract: 1. In a voltage clamp setting (Ussing chamber), the antidiarrhoeal drug, loperamide (Lop) slightly augmented prostaglandin E1 (PGE1) plus theophylline-stimulated net chloride secretion above control values at low concentrations (10(-10) and 10(-9) M) but inhibited it at higher concentrations (10(-6) and 10(-5) M). The apparently weak prosecretory action component of Lop was turned into a clear cut antisecretory effect by pretreatment with 2 x 10(-7) M naloxonazine plus 10(-7) M CTOP-NH2 (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2), two selective mu opioid receptor antagonists. This indicates a prosecretory effect of loperamide at mu opioid receptors. The antisecretory effect of low Lop concentrations, uncovered by mu opioid receptor blockade, was prevented by additional blockade of kappa opioid receptors by 5 x 10(-9) M nor-binaltorphimine (nor-BNI). 2. The nonselective opioid antagonist, naloxone, at 10(-6) M did not significantly reduce either PGE1 plus theophylline-stimulated net chloride secretion in Lop-free controls or the antisecretory action of Lop. By contrast, the partial agonist ethylketocyclazocine (EKC), which activates kappa but blocks mu opioid receptors, concentration-dependently inhibited PGE1 plus theophylline-stimulated net chloride secretion without any consistent prosecretory action component. Nor-BNI at 5 x 10(-8) M significantly blocked the antisecretory action of EKC. 3. It is concluded that, in the guinea-pig colonic mucosa under the present conditions, mu opioid receptors mediate enhancement and kappa opioid receptors inhibition of PGE1-stimulated net chloride secretion by low Lop concentrations. The two opposite actions are largely masked by superimposition. An opioid receptor-independent mechanism of action contributes to the antisecretory effect of Lop at high concentrations.[Abstract] [Full Text] [Related] [New Search]