These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence for lack of modulation of mu-opioid agonist action by delta-opioid agonists in the mouse vas deferens and guinea-pig ileum.
    Author: Elliott J, Traynor JR.
    Journal: Br J Pharmacol; 1995 Mar; 114(5):1064-8. PubMed ID: 7780641.
    Abstract:
    1. There is evidence from in vivo studies for an interaction of mu- and delta-opioid ligands. In the present work this concept has been investigated using the mouse vas deferens and guinea-pig ileum myenteric plexus-longitudinal preparations. 2. In field stimulated vasa deferentia of the mouse, co-administration of sub-effective concentrations of the delta-opioid agonist [D-Pen2,D-Pen5]enkephalin (DPDPE) and [Met5]- or [Leu5]enkephalin had no effect on the dose-response curves of the mu-agonists [D-Ala2,MePhe4, Gly-ol5]enkephalin (DAMGO) and morphine. Similarly, the delta-opioid agonists did not alter the potency of morphine and DAMGO when added at different times prior to the mu-opioid agonists, or when EC50 concentrations of delta-opioid ligands were co-administered. Compounds with preferred activity for the putative delta 1-(DPDPE) or delta 2-([D-Ala2,Glu4]deltorphin II (Delt II)) opioid receptors were ineffective in this respect. 3. The guinea-pig ileum contains delta-opioid receptors. No function of these receptors in mediating blockage of field-stimulated contractions was observed with ligands having affinity for the putative delta 1 or delta 2 subtypes nor were the agonists able to modulate responses to mu-opioid ligands in this tissue. 4. The results demonstrate the modulation of mu-opioid agonists by delta-opioid agonists does not occur in the isolated peripheral tissues examined. Thus the findings do not support the concept of a functional coupling of opioid receptors, though the results may be explained by differences between opioid systems in the brain and peripheral tissues examined.
    [Abstract] [Full Text] [Related] [New Search]