These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells.
    Author: Thwaites DT, Cavet M, Hirst BH, Simmons NL.
    Journal: Br J Pharmacol; 1995 Mar; 114(5):981-6. PubMed ID: 7780654.
    Abstract:
    1. The role of proton-linked solute transport in the absorption of the angiotensin-converting enzyme (ACE) inhibitors captopril, enalapril maleate and lisinopril has been investigated in human intestinal epithelial (Caco-2) cell monolayers. 2. In Caco-2 cell monolayers the transepithelial apical-to-basal transport and intracellular accumulation (across the apical membrane) of the hydrolysis-resistant dipeptide, glycylsarcosine (Gly-Sar), were stimulated by acidification (pH 6.0) of the apical environment. In contrast, transport and intracellular accumulation of the angiotensin-converting enzyme (ACE) inhibitor, lisinopril, were low (lower than the paracellular marker mannitol) and were not stimulated by apical acidification. Furthermore, [14C]-lisinopril transport showed little reduction when excess unlabelled lisinopril (20 mM) was added. 3. pH-dependent [14C]-Gly-Sar transport was inhibited by the orally-active ACE inhibitors, enalapril maleate and captopril (both at 20 mM). Lisinopril (20 mM) had a relatively small inhibitory effect on [14C]-Gly-Sar transport. pH-dependent [3H]-proline transport was not inhibited by captopril, enalapril maleate or lisinopril. 4. Experiments with BCECF[2',7',-bis(2-carboxyethyl)-5(6)-carboxyfluorescein]-loaded Caco-2 cells demonstrate that dipeptide transport across the apical membrane is associated with proton flow into the cell. The dipeptide, carnosine (beta-alanyl-L-histidine) and the ACE inhibitors enalapril maleate and captopril, all lowered intracellular pH when perfused at the apical surface of Caco-2 cell monolayers. However, lisinopril was without effect. 5. The effects of enalapril maleate and captopril on [14C]-Gly-Sar transport and pHi suggest that these two ACE inhibitors share the H(+)-coupled mechanism involved in dipeptide transport. The absence of pH-dependent [14C]-lisinopril transport, the relatively small inhibitory effect on [14C]-Gly-Sar transport,and the absence of lisinopril-induced pHi changes, all suggest that lisinopril is a poor substrate for thedi/tripeptide carrier in Caco-2 cells. These observations are consistent with the greater oral availability and time-dependent absorption profile of enalapril maleate and captopril, compared to lisinopril.
    [Abstract] [Full Text] [Related] [New Search]