These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The genotype of bone marrow-derived inflammatory cells does not account for differences in skeletal muscle regeneration between SJL/J and BALB/c mice. Author: Mitchell CA, Grounds MD, Papadimitriou JM. Journal: Cell Tissue Res; 1995 May; 280(2):407-13. PubMed ID: 7781037. Abstract: This study determined whether the genotype of bone marrow-derived inflammatory cells contributes to the more pronounced leukocytic exudation and extensive new muscle formation seen in SJL/J compared with BALB/c mice after a crush-injury (Mitchell et al. 1992). Female SJL/J mice were whole-body irradiated and reconstituted with male bone marrow from the BALB/c strain, and irradiated BALB/c females reconstituted with male SJL/J bone marrow. The mice were allowed to recover for 3 weeks and the tibialis anterior muscle (in a leg which had been protected from irradiation) was injured by crushing. At 3 and 10 days after injury the extent of necrotic debris, mononuclear leukocytic infiltration and new muscle formation was assessed in the muscles. The SJL/J mice reconstituted with BALB/c bone marrow showed extensive mononuclear leukocytic infiltration and clearance of necrotic debris when compared with BALB/c mice reconstituted with SJL/J bone marrow, and these strain-specific differences mirrored those seen with control bone marrow reconstituted hosts and non-irradiated hosts. The results show that the genotype of the bone marrow-derived macrophages is not responsible for the superior regeneration of crush-injured skeletal muscle in SJL/J mice, and it appears that factors intrinsic to the muscle tissue may be of central importance.[Abstract] [Full Text] [Related] [New Search]