These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Amylin/islet amyloid polypeptide: biochemistry, physiology, patho-physiology. Author: Castillo MJ, Scheen AJ, Lefèbvre PJ. Journal: Diabete Metab; 1995 Feb; 21(1):3-25. PubMed ID: 7781840. Abstract: Amylin is a 37 amino-acid peptide mainly produced by the islet beta-cell. Aggregation of amylin is partly responsible for amyloid formation. Amyloid deposits occur both extracellularly and intracellularly and may contribute to beta-cell degeneration. Amylin is packed in beta-cell granules and cosecreted with insulin in response to the same stimuli but, unlike other beta-cell products, it is produced from specific a gene on chromosome 12. Basal, plasma amylin concentrations are around 5 pM, and increase fourfold after meals or glucose. Higher levels are found in cases of insulin resistance, obesity, gestational diabetes and in some patients with NIDDM. Low or absent levels are found in insulin-dependent diabetic patients. There are similarities between amylin and non beta-cell peptides such as calcitonin gene related peptides (CGRP). They may bind to the same receptor, determine similar post-receptor phenomena and qualitatively similar actions but with different degree of potency. The actions of amylin are multiple and mostly exerted in the regulation of fuel metabolism. In muscle, amylin opposes glycogen synthesis, activates glycogenolysis and glycolysis (increasing lactate production). Consequently, amylin increases lactate output by muscle and increases the plasma lactate concentration. In fasting conditions, this lactate may serve as a gluconeogenic substrate for the liver, contributing to replenish depleted glycogen stores and to increase glucose production. In non-fasting conditions, lactate can be transformed by liver in triglycerides. It is not clear at present whether amylin actions on the liver are direct or mediated by changes in circulating metabolites. A probably indirect effect of amylin in muscle is to decrease insulin- (or glucose)-induced glucose uptake, which may contribute to insulin resistance. Other actions include inhibition of glucose-stimulated insulin secretion and, in general, actions mimicking CGRP effects. Some of these actions are seen at supraphysiological concentrations. The physiopathological consequences of amylin deficiency, or excess are under active by investigated.[Abstract] [Full Text] [Related] [New Search]