These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modifications by chronic intermittent hypoxia and drug treatment on skeletal muscle metabolism. Author: Pastoris O, Dossena M, Foppa P, Arnaboldi R, Gorini A, Villa RF, Benzi G. Journal: Neurochem Res; 1995 Feb; 20(2):143-50. PubMed ID: 7783838. Abstract: The energy metabolism was evaluated in gastrocnemius muscle from 3-month-old rats subjected to either mild or severe 4-week intermittent normobaric hypoxia. Furthermore, 4-week treatment with CNS-acting drugs, namely, alpha-adrenergic (delta-yohimbine), vasodilator (papaverine, pinacidil), or oxygen-increasing (almitrine) agents was performed. The muscular concentration of the following metabolites was evaluated: glycogen, glucose, glucose 6-phosphate, pyruvate, lactate, lactate-to-pyruvate ratio; citrate, alpha-ketoglutarate, succinate, malate; aspartate, glutamate, alanine; ammonia; ATP, ADP, AMP, creatine phosphate. Furthermore the Vmax of the following muscular enzymes was evaluated: hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase; citrate synthase, malate dehydrogenase; total NADH cytochrome c reductase; cytochrome oxidase. The adaptation to chronic intermittent normobaric mild or severe hypoxia induced alterations of the components in the anaerobic glycolytic pathway [as supported by the increased activity of lactate dehydrogenase and/or hexokinase, resulting in the decreased glycolytic substrate concentration consistent with the increased lactate production and lactate-to-pyruvate ratio] and in the mitochondrial mechanism [as supported by the decreased activity of malate dehydrogenase and/or citrate synthase resulting in the decreased concentration of some key components in the tricarboxylic acid cycle]. The effect of the concomitant pharmacological treatment suggests that the action of CNS-acting drugs could be also related to their direct influence on the muscular biochemical mechanisms linked to energy transduction.[Abstract] [Full Text] [Related] [New Search]