These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intracellular calcium levels correlate with speed and persistent forward motion in migrating neutrophils.
    Author: Mandeville JT, Ghosh RN, Maxfield FR.
    Journal: Biophys J; 1995 Apr; 68(4):1207-17. PubMed ID: 7787012.
    Abstract:
    The relationship between cytosolic free calcium concentration ([Ca2+]i) and human neutrophil motility was studied by video microscopy. Neutrophils stimulated by a uniform concentration of an N-formylated peptide chemoattractant (f-Met-Leu-Phe) were tracked during chemokinetic migration on albumin, fibronectin, and vitronectin. [Ca2+]i buffering with quin2 resulted in significant decreases in mean speed on albumin. To further characterize the relationship between [Ca2+]i changes and motility we carried out a cross-correlation analysis of [Ca2+]i with several motility parameters. Cross-correlations between [Ca2+]i and each cell's speed, angle changes, turn strength, and persistent forward motion revealed (i) a positive correlation between [Ca2+]i and cell speed (p < 0.05), (ii) no significant correlation between turns and calcium spikes, and (iii) the occurrence of turns during periods of low speed. Significant negative correlations between [Ca2+]i and angle change were noted on the high adhesion substrates vitronectin and fibronectin but not on the low adhesion substrate albumin. These data imply that there is a general temporal relationship between [Ca2+]i, speed, and persistent motion. However, the correlations are not sufficiently strong to imply that changes in [Ca2+]i are required proximal signals for velocity changes.
    [Abstract] [Full Text] [Related] [New Search]